


Understanding XNA 
Framework Performance

Shawn Hargreaves
Software Development Engineer
XNA Community Game Platform
Microsoft



Contents

Graphics
Offload to the GPU

Understand Xbox 360 system calls

SpriteBatch, Effects, Renderstates

Math

Multithreading

Profiling tools



OFFLOAD TO THE GPU



The GPU Is a Powerful Beastie

Offload tasks from CPU to GPU

Consider GPU instancing

Particle 3D sample (http://creators.xna.com)

GPU effect with low CPU overhead

http://creators.xna.com/


UNDERSTAND SYSTEM CALLS



Windows Architecture
User programs cannot directly access hardware

Operating System

(supervisor mode)

Game Executable

(user mode)

Graphics 
Driver

Graphics 
Hardware

D3D

D3DX



Game Executable

(user mode)

Xbox Architecture
Consoles typically just run everything directly in 
supervisor mode

No mode transitions = reduced overhead

Small batches less expensive than on Windows

Game Executable

(supervisor mode)
Graphics 
Hardware

Graphics 
Driver
D3D

D3DX



Xbox 360 Architecture
Xbox 360 hypervisor enforces security

Hypervisor ensures only signed memory pages 
can execute

Games are signed during certification

Game Executable

(supervisor mode)

D3D

D3DX
Graphics 
Hardware

Hypervisor

If only signed code can execute, how is a 

dynamically jitted runtime even possible?



XNA Framework
Managed code runs in separate user address space

Managed code cannot directly call D3D or D3DX

User to supervisor transitions are expensive

4 microseconds per system call

Command buffer batches up API calls

XNA Framework

(supervisor mode)

D3D

D3DX
Graphics 
Hardware

Managed Game

(user mode)

Managed 
Graphics 
Device

Hypervisor



Batchable APIs
These APIs are currently batched into a single system call

Assigning to:

• VertexShader

• PixelShader

• VertexDeclaration

• IndexBuffer

• RenderState

• SamplerStates

• Textures

• DepthStencilBuffer

• Viewport

• ScissorRectangle

• ClipPlanes

• Effect.CurrentTechnique

Calling:

• Effect Begin/End

• EffectPass Begin/End

• Effect.CommitChanges

• EffectParameter.SetValue

• VertexStream.SetSource

• Set*ShaderConstant

• StateBlock Capture/Apply

• SetRenderTarget

• Draw[Indexed]Primitives

• DrawUser[Indexed]Primitives

• If the primitive count is small

• Clear

• Resolve



Nasty Unbatchable APIs
These APIs currently require one system call each

Present

Creating or destroying graphics resources

*.SetData, *.GetData

DrawUser[Indexed]Primitives

If the primitive count is large

Reading from:

VertexShader

PixelShader

RenderState

SamplerStates

Textures

Get*ShaderConstant

EffectParameter.GetValue



Cached Managed State
These can be read without any system call at all

DisplayMode

Viewport

VertexDeclaration

VertexStream

IndexBuffer

Effect.CurrentTechnique



SPRITEBATCH, EFFECTS, 
RENDERSTATES



Speedy Sprites
SpriteBatch is well optimized

Draw many sprites inside one Begin/End pair

If possible, use SpriteSortMode.Immediate

Draw in texture order

Use sprite sheets to combine multiple tiles or animation frames 
into a single texture

Otherwise, use SpriteSortMode.Texture

SpriteSortMode

Immediate Deferred Texture

1000 batches, one sprite in each (please 

don’t do this!)
34 ms 34 ms 34 ms

One batch, 1000 sprites, all using the same 

texture 0.6 ms 0.7 ms 1.8 ms

One batch, 1000 sprites, alternating 

between two different textures
11.5 ms 11.6 ms 1.9 ms



Efficient Effects
Two different ways to think about effects

Effect = shader

One effect instance per shader algorithm

Material parameters are stored elsewhere

Effect = material

One effect instance per unique material, created from an 
original archetype effect using Effect.Clone

Material parameters are stored directly inside the effect

The Content Pipeline does this by default

Microseconds

Begin/End on a cloned instance of BasicEffect 9.2

Using EffectParameter.SetValue and CommitChanges to 

update a shared BasicEffect instance

19.2

Using EffectParameterBlock.Apply to update a shared 

BasicEffect instance

19.6



Rapid Renderstates

Assigning directly to managed state properties is fastest

Using dummy effect passes to manage state can be 
convenient, but not faster

State blocks are particularly slow on Xbox 360

Do not specify SaveStateMode.SaveState when calling 
SpriteBatch.Begin or Effect.Begin

Microseconds

Assigning directly to renderstates 4.8

Using a dummy effect pass 5.4

Using a StateBlock 34.5



MATH



Math Performance

Simple things you can do to help the JIT
Pass vector + matrix arguments by reference

Manually inline performance critical routines

But these optimizations:
Can affect readability

May not be necessary in the future



Math Performance
A particular example

class Particle

{

public Vector3 Position;

public Vector3 Velocity;

const float Friction = 0.9f;

public void Update()

{

Position += Velocity;

Velocity *= Friction;

}

}

Updates per second: 3380000



Math Performance
Pass structures by reference

public void Update()

{

Position += Velocity;

Velocity *= Friction;

Vector3.Add(ref Position, ref Velocity, out Position);

Vector3.Multiply(ref Velocity, Friction, out Velocity);

}

Updates per second: 5540000 (x1.6)



Math Performance
Manually inline computations

public void Update()

{

Position += Velocity;

Velocity *= Friction;

Position.X += Velocity.X;

Position.Y += Velocity.Y;

Position.Z += Velocity.Z;

Velocity.X *= Friction;

Velocity.Y *= Friction;

Velocity.Z *= Friction;

}

Updates per second: 12840000 (x3.8)



Math Performance

XNA Framework math library is heavily inlined
// These alternatives perform identically

Position = Vector3.Add(Position, Velocity);

Position += Velocity;

Constructors can be manually inlined
Position = new Vector3(23, 42, -1);

Position = new Vector3();

Position.X = 23;

Position.Y = 42;

Position.Z = -1;



MULTITHREADING



Run, Thread, Run!

Xbox 360 has three independent CPU cores
CPU horsepower is idle if you have fewer than three 
parallel threads

Xbox 360 does not automatically schedule 
threads across multiple cores

You must explicitly assign threads to cores

Current Xbox 360 ThreadPool is not optimized



Reentering the Framework

GraphicsDevice is somewhat thread-safe
Cannot render from more than one thread at a time

Can create resources and SetData while another thread renders

ContentManager is not thread-safe
Ok to have multiple instances, but only one per thread

Input is not threadable
Windows games must read input on the main game thread

Audio and networking are thread-safe



PROFILING TOOLS



Profiling on Xbox 360
XNA Framework Remote Performance Monitor for Xbox 360

Provides basic garbage collector 
information

Can tell if you have a GC problem, but not 
usually enough to diagnose the cause

Shows the number of system calls

Not much help for identifying 
computational bottlenecks



Profiling on Xbox 360



Profiling on Windows

Inference to the rescue!
The XNA Framework is similar enough on both 
platforms that measurements taken on Windows are 
also applicable to the Xbox 360 version of your game

There are many great Windows perf tools
The CLR Profiler for garbage collection issues

Sampling profilers: Visual Studio Team System, ANTS, 
NProf, Optimizeit, VTune



Profiling on Windows
CLR Profiler for the .NET Framework 2.0



Recommendations

Graphics
Offload to the GPU

Understand Xbox 360 system calls

Choose an appropriate SpriteSortMode

Avoid StateBlock

Optimize math where necessary

Take advantage of multiple threads

Profile on both Xbox and Windows



© 2007 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

http://www.xna.com

http://www.xna.com

