
High Performance 3D Games 

on Windows Phone 7 Series
Shawn Hargreaves
Microsoft Corporation

Blog: http://shawnhargreaves.com

Twitter: @ShawnHargreave



Windows Phone 7 Series Hardware

Consistent sets of hardware 

capabilities defined by Microsoft

One resolution at launch

Second resolution added later

Same touch input

Consistent processor / GPU

Same available RAM

Optional keyboard



The CPU



The Evolution of Programming

Low level control

Straight to the metal

Raw performance tuning

High level abstraction

Rely on compiler and runtime

Developer productivity



C++ Interview Question

for (EntityList::iterator it = entities.begin(); it != entities.end(); it++)
{

ICollidable* col = dynamic_cast<ICollidable*>(*it);

if (col)
pendingCollisions.push_back(new CollisionInfo(col));

}



Why C# r0x0rz

Powerful and expressive

Type safety reduces hard-to-track-down bugs

Reflection

Initializer syntax

Great tooling (IntelliSense)

Similar enough to C that learning and porting are easy

Blazingly fast compiles

C#



.NET on Windows

Usually within a few percent of native performance

Awesome generational garbage collection

Performance shootout: Raymond Chen vs. Rico Mariani

http://blogs.msdn.com/ricom/archive/2005/05/10/416151.aspx

http://blogs.msdn.com/ricom/archive/2005/05/10/416151.aspx


.NET on Xbox 360

Significant delta between managed and native

.NET Compact Framework
Simplistic mark-and-sweep garbage collection

Xbox is not a general purpose computer
Unforgiving in-order CPU architecture

Requires custom VMX instructions for optimal math perf

Security architecture poses challenges for jitted code



.NET on Windows Phone 7 Series

In between Windows and Xbox 360

.NET Compact Framework
Keep an eye on garbage collection!

ARMv7 CPU
More forgiving toward jitted code

ARM jitter is more mature than PPC



Ways To Call Code

Instance method

Interface

Delegate / event

Reflection

Virtual method



Choose Your Own Address

C++ allows independent choice of

.NET types dictate their allocation and usage semantics

Data type

The memory in which a type lives (placement new)

How a type instance is referenced (T, T*, T&, const T&)

Value types
int, bool, struct, Vector3

Reference types
class, array, string, delegate, boxed value types



A Popular Myth

Oft-repeated wisdom

Value types live on the stack

Reference types live 

on the heap

Value types live wherever 

they are declared

Reference types have two pieces
Memory allocated from the heap

A pointer to this heap memory

That is subtly incorrect



class vs. struct

By default, 

prefer class over struct
Use struct for things that are

Small (<= 16 bytes)

Short lived

Pass large structs by reference

Matrix a, b, c;
c = Matrix.Multiply(a, b); // copies 192 bytes!
Matrix.Multiply(ref a, ref b, out c);



Memory Management

C++ .NET

Allocate Initially fast, becoming slower 

as fragmentation increases

Very fast, apart from periodic 

garbage collections

Free Fast Instantaneous

Fragmentation Increases over time None

Cache coherency Requires custom allocators Things allocated close in time are 

also close in physical location

Garbage collection is not optional
Can’t have type safety without automatic memory management



Mark and Sweep

Triggered per megabyte of allocation1

Starts with root references (stack variables, statics)2

Recursively follows all references to see 

what other objects can be reached3

Anything we didn’t reach must be garbage4

Compacts the heap, sliding live objects down to fill holes5



Two Ways To Keep GC Happy

Make it run Less Often

If you never allocate, GC will never run

Make it Finish Quickly

Collection time is proportional to how many

object references must be traversed

Use object pools Simple heap = fast collection

Use value types and integer handles



GC.Collect

Explicitly forces 

a garbage collection

Use wisely to give yourself more headroom
After loading

During pauses in gameplay

Don’t call every frame!



Avoiding Allocation

Beware of boxing

string vs. StringBuilder

Use WeakReference to track GC frequency
http://blogs.msdn.com/shawnhar/archive/2007/10/12/monitoring-the-garbage-collector.aspx

Use CLR Profiler on Windows
See Cullen Waters talk: “Development and Debugging Tools for Windows Phone 7 Series”

Use .NET Reflector to peek behind the curtain
http://www.red-gate.com/products/reflector/

http://blogs.msdn.com/shawnhar/archive/2007/10/12/monitoring-the-garbage-collector.aspx
http://www.red-gate.com/products/reflector/


foreach is Syntactic Sugar

foreach (var x in collection) DoStuff(x);

becomes:

var enumerator = collection.GetEnumerator();
while (enumerator.MoveNext()) DoStuff(enumerator.Current);

Is the enumerator a value type?
Array, List<T>, and most XNA types are fine

Some collection types create garbage



Iterator Methods

IEnumerable<Action> Think()
{

while (true)
{

Heading = ChooseRandomDirection();

while (ElapsedTime < 23)
yield return Action.WalkForward;

yield return Action.LookAround;

if (Vector3.Distance(Position, Enemy.Position) < 42)
{

yield return Action.LoadWeapon;
yield return Action.FireWeapon;

}
}

}



Iterators Are Compiler Magic

[CompilerGenerated]
private sealed class <Think>d__0 : IEnumerable<Action>
{

private int <>1__state;
private Action <>2__current;

private bool MoveNext()
{

switch (this.<>1__state)
{

case 0:
this.<>1__state = -1;
break;

case 1:
goto Label_0073;

case 2:
this.<>1__state = -1;
if (Vector3.Distance(this.<>4__this.Position, 

...
break;

this.<>2__current = Action.LoadWeapon;
this.<>1__state = 3;
return true;

case 3:

this.<>1__state = -1;

this.<>2__current = Action.FireWeapon;

this.<>1__state = 4;

return true;

case 4:

this.<>1__state = -1;

break;

default:

return false;

}

this.<>4__this.Heading = ChooseRandomDirection();

while (this.<>4__this.ElapsedTime < 23f)

{

this.<>2__current = Action.WalkForward;

this.<>1__state = 1;

return true;

Label_0073:

this.<>1__state = -1;

}

this.<>2__current = Action.LookAround;

this.<>1__state = 2;

return true;

}



The GPU



Five Configurable Effects

Plus hardware accelerated 2D sprite drawing

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect



BasicEffect

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect

• 0-3 directional lights

• Blinn-Phong shading

• Optional texture

• Optional fog

• Optional vertex color

Vertex Cost Pixel Cost

No lighting 5 1

One vertex light 40 1

Three vertex lights 60 1

Three pixel lights 18 50

+ Texture +1 +2

+ Fog +4 +2



DualTextureEffect

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect

• For lightmaps, detail textures, decals

• Blends two textures

• Separate texture coordinates

• Modulate 2X combine mode (A*B*2)

• Good visuals at low pixel cost

Vertex Cost Pixel Cost

Two Textures 7 6

+ Fog +4 +2



AlphaTestEffect

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect

• For billboards and imposters

• Adds alpha test operations (pixel kill)

• Standard blending is free with all effects

• Only need alpha test if you want to 

disable depth/stencil writes

Vertex Cost Pixel Cost

<, <=, >=, > 6 6

==, != 6 10

+ Fog +4 +2



SkinnedEffect

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect

• For animated models and instancing

• Game code animates bones on CPU

• Vertex skinning performed by GPU

• Up to 72 bones

• One, two, or four weights per vertex

Vertex Cost Pixel Cost

One vertex light 55 4

Three vertex lights 75 4

Three pixel lights 33 51

+ Two bones +7 +0

+ Four bones +13 +0

+ Fog +0 +2



EnvironmentMapEffect

BasicEffect SkinnedEffect EnvironmentMapEffectAlphaTestEffectDualTextureEffect

• Oooh, shiny!

• Diffuse texture + cube environment map

• Cheap way to fake many complex lights

• Fresnel term simulates behavior when light reaches 

a surface and some reflects, some penetrates

Vertex Cost Pixel Cost

One light 32 6

Three lights 36 6

+ Fresnel +7 +0

+ Specular +0 +2

+ Fog +0 +2



A Balancing Act

Framerate

Number

of Pixels
Pixel Cost



Balancing Framerate

Framerate

• 30 hz refresh rate

• No point updating faster than the display!

Game.TargetElapsedTime =
TimeSpan.FromSeconds(1f / 30);



Balancing Pixel Cost

Pixel Cost
• Prefer cheaper effects

• Minimize overdraw
• Many known algorithms:

•Distance, frustum, BSP, sort front to back

• Implement “overdraw xray mode” 
•Draw untextured with additive blending

• Brighter areas indicate overdraw



Balancing Number of Pixels

Number

of Pixels

• 800x480 is 25% more pixels than Xbox 1
• Great for text

• Too many pixels for intensive games

• 800x480 = 384,000 pixels

• 600x360 = 216,000 pixels (56%)

• Dedicated hardware scaler

• Does not consume any GPU

• Higher quality than bilinear upsampling



Demo

Scaler Demo



XNA Framework API Cheat Sheet

Avoid Prefer

RenderTargetUsage.PreserveContents

device.BlendState = new BlendState {…}; // At startup

// Per frame

VertexBuffer.SetData(…) …

// or

…



Summary

Great performance comes from great knowledge

Understand

Actions

Value types vs. reference types

Garbage collection

C# compiler magic (foreach, iterator methods, closures)

Cost of the different graphical effect options

Use CLR Profiler and .NET Reflector

Render smaller than display resolution, rely on scaler




